Pseudocomplements of closure operators on posets

نویسنده

  • Francesco Ranzato
چکیده

Some recent results provide su,cient conditions for complete lattices of closure operators on complete lattices, ordered pointwise, to be pseudocomplemented. This paper gives results of pseudocomplementation in the more general setting of closure operators on mere posets. The following result is 0rst proved: closure operators on a meet-continuous meet-semilattice form a pseudocomplemented complete lattice. Furthermore, the following orthogonal result (actually, a slightly more general result) is proved: Closure operators on a directed-complete poset which is trans0nitely generated by maximal lower bounds from its set of completely meet-irreducible elements—any poset satisfying the ascending chain condition belongs to this class—form a pseudocomplemented complete lattice. c © 2002 Elsevier Science B.V. All rights reserved. MSC: 06A15 (06A12; 06B35; 06D15)

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

NETS AND SEPARATED S-POSETS

Nets, useful topological tools, used to generalize certainconcepts that may only be general enough in the context of metricspaces. In this work we introduce this concept in an $S$-poset, aposet with an action of a posemigroup $S$ on it whichis a very useful structure in computer sciences and interestingfor mathematicians, and give the the concept of $S$-net. Using $S$-nets and itsconvergency we...

متن کامل

Closure operators on sets and algebraic lattices

Closure operators are abundant in mathematics; here are a few examples. Given an algebraic structure, such as group, ring, field, lattice, vector space, etc., taking the substructure generated by a set, i.e., the least substructure which includes that set, is a closure operator. Given a binary relation, taking the relation with certain properties, such as reflexive, transitive, equivalence, etc...

متن کامل

M-FUZZIFYING MATROIDS INDUCED BY M-FUZZIFYING CLOSURE OPERATORS

In this paper, the notion of closure operators of matroids  is generalized to fuzzy setting  which is called $M$-fuzzifying closure operators, and some properties of $M$-fuzzifying closure operators are discussed. The $M$-fuzzifying matroid induced by an $M$-fuzzifying closure operator can induce an $M$-fuzzifying closure operator. Finally, the characterizations of $M$-fuzzifying acyclic matroi...

متن کامل

A Counterexample to a Result concerning Closure Operators

In 1960, José Morgado gave a necessary and sufficient condition on a poset P in order that closure operators on P , ordered pointwise, form a complete lattice. This result was based on a notion of relative quasi-infimum in posets. This note shows that Morgado’s result is flawed.

متن کامل

On Generalizing Pawlak Approximation Operators

This paper reviews and discusses generalizations of Pawlak rough set approximation operators in mathematical systems, such as topological spaces, closure systems, lattices, and posets. The structures of generalized approximation spaces and the properties of approximation operators are analyzed.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Discrete Mathematics

دوره 248  شماره 

صفحات  -

تاریخ انتشار 2002